On initial value and terminal value problems for Hamilton-Jacobi equation
نویسندگان
چکیده
First order partial differential equations (PDE) are often the main tool to model problems in optimal control, differential games, image processing, physics, etc. Dependent upon the particular application, the boundary conditions are specified either at the initial time instant, leading to an initial value problem (IVP), or at the terminal time instant, leading to a terminal value problem (TVP). The IVP and TVP have in general different solutions. Thus introducing a new model in terms of a first order PDE one has to consider both possibilities of IVP and TVP, unless there is a direct physical indication. In this paper we also particularly answer the following question: how should the initial value at the initial surface and the terminal value at the terminal surface be coordinated in order to generate the same solution? One may expect that for a given initial value the consistent terminal value is the value of the IVP solution at the terminal surface. The second (time-varying) example in this paper shows that, generally, this is not true for non-smooth initial conditions. We discuss also the difference between the IVP and TVP formulations, the connection between the Hamiltonians arising in IVP and TVP. © 2007 Elsevier B.V. All rights reserved.
منابع مشابه
Convexity in Hamilton-Jacobi Theory I: Dynamics and Duality
Value functions propagated from initial or terminal costs and constraints by way of a differential inclusion, or more broadly through a Lagrangian that may take on∞, are studied in the case where convexity persists in the state argument. Such value functions, themselves taking on ∞, are shown to satisfy a subgradient form of the Hamilton-Jacobi equation which strongly supports properties of loc...
متن کاملConvexity in Hamilton-Jacobi Theory II: Envelope Representations
Upper and lower envelope representations are developed for value functions associated with problems of optimal control and the calculus of variations that are fully convex, in the sense of exhibiting convexity in both the state and the velocity. Such convexity is used in dualizing the upper envelope representations to get the lower ones, which have advantages not previously perceived in such ge...
متن کاملConvexity and Duality in Hamilton-Jacobi Theory
Value functions propagated from initial or terminal costs and constraints by way of a differential inclusion, or more broadly through a Lagrangian that may take on∞, are studied in the case where convexity persists in the state argument. Such value functions, themselves taking on ∞, are shown to satisfy a subgradient form of the Hamilton-Jacobi equation which strongly supports properties of loc...
متن کاملOptimal control of stochastic delayed systems with jumps
We consider the optimal control of stochastic delayed systems with jumps, in which both the state and controls can depend on the past history of the system, for a value function which depends on the initial path of the process. We derive the Hamilton-Jacobi-Bellman equation and the associated verification theorem and prove a necessary and a sufficient maximum principles for such problems. Expli...
متن کاملInitialization of the Shooting Method via the Hamilton-Jacobi-Bellman Approach
The aim of this paper is to investigate from the numerical point of view the coupling of the Hamilton-Jacobi-Bellman (HJB) equation and the Pontryagin minimum principle (PMP) to solve some control problems. A rough approximation of the value function computed by the HJB method is used to obtain an initial guess for the PMP method. The advantage of our approach over other initialization techniqu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Systems & Control Letters
دوره 56 شماره
صفحات -
تاریخ انتشار 2007